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1 Introduction 
The main platform architecture developed in PRO3D project is depicted in Figure 1. It can be 
considered a derivation of the P2012 platform template, described in D7.1. 

 

 
Figure 1: PRO3D Target Architecture 

 

STMicroelectronics Platform 2012 (P2012) is high-performance architecture for 
computationally demanding image understanding and augmented reality applications [5]. 
P2012 architecture is composed by several processing clusters interconnected by a Network 
on Chip (NoC).  

P2012 features a complex memory hierarchy organization which comprises several levels and 
memory types. L1 level is the closest to the processing element and can be accessed locally by 
its embedding processing element but may also be accessed by non local processing elements 
with an increased access time. L2 level is an intermediate level typically used for storing data 
which are shared by several processing elements of the same cluster. L3 is a large memory 
that can be accessed by all the clusters of the fabric. The possible implementation of level L3 
is a central 3D stacked memory. Further details can be found in [34]. 

Clearly, the organization of memory hierarchy is one of the most important and critical phases 
in manycore architecture design. Dealing with massively parallel systems such as P2012, 
instruction caching, data memory and DRAM interfacing play a fundamental role since they 
must provide the required bandwidth to all cores and software tasks, complying with tight 
constraints in terms of size and complexity.  

The present deliverable reports the work done in WP1, which is focused in deploying the 
modelling infrastructure to simulate thermal and functional features of the PRO3D stacks.  

The following sections describe our modelling approaches and provide the technical details 
on the implementation work that has been conducted for developing and characterizing the 
memory hierarchy in the proposed PRO3D platform.  

More in details, Section 2 focuses on the L1 memory subsystem. Section 3 discusses the 
DRAM subsystem for 3D integrated SoCs. Finally, Section 5 highlights the main conclusions. 
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2 L1 memory subsystem  
To keep the pace of Moore’s law, several Chip-Multiprocessors (CMP) platforms are 
embracing the manycore paradigm, where a large number of simple cores are integrated onto 
the same die. Current examples of many-cores include GP-GPUs such as NVIDIA Fermi [1], 
the HyperCore Architecture Line (HAL) [3] processors from Plurality, or ST 
Microelectronics Platform 2012 [5].  

All of the cited architectures share a few common traits: their fundamental computing tile is a 
tightly coupled cluster with a shared multibanked L1 memory for fast data access and a fairly 
large number of simple cores, with ≈ 1 Instruction Per Cycle (IPC) per core. Key to providing 
I-fetch bandwidth for a cluster is an effective instruction cache architecture design. Due to the 
lack of sophisticated hardware support to hide L2/L3 memory latency (e.g. prefetch buffers), 
the simple processors embedded in many-cores may indeed experience prolonged stalls on 
long-latency I-fetch. 

The Fermi-based General Purpose Graphic Processing Units (GPGPU) comprises hundreds of 
Streaming Processors (SP) organized in groups of Streaming Multiprocessors (SM) [1]. The 
numbers of SMs and SPs per device vary by device. GPGPUs employ massively multi-
threading in order to hide the latency of main memory. The GPU achieves indeed efficiency 
by splitting application workload into multiple groups of threads (called warps) and 
multiplexing many of them onto the same SM. When a warp that is scheduled attempts to 
execute an instruction whose operands are not ready (due to an incomplete memory load, for 
example), the SM switches context to another warp that is ready to execute, thereby hiding the 
latency of slow operations such as memory loads. All the SPs in an SM execute their threads 
in lock-step, according to the order of instructions issued by the per-SM instruction unit. SPs 
within the same SM share indeed one single instruction cache [2].  

Plurality’s HyperCore Architecture Line (HAL) family includes 16 to 256 32-bit RISC cores, 
shared memory architecture, and a hardware-based scheduler that supports a task-oriented 
programming model [3]. HAL cores are compact 32-bit RISC cores, which execute a subset 
of the SPARC v8 instruction set with extensions. The memory system is composed by a 
single shared memory which operates also as instruction cache. The shared memory holds 
indeed program, data, stack, and dynamically allocated memory. Each core has two memory 
ports: an instruction port that can only read from memory, and a data port that can either read 
or write to memory. Both ports can operate simultaneously, thus allowing an instruction fetch 
and a data access by each individual core at each clock cycle. The processors do not have any 
private cache or memory, avoiding coherency problems. However, conflicting accesses 
cannot be avoided causing latency increasing for not-served requests [4].  

All of the cited platforms have adopted different instruction cache architectures, meaning that 
there is still not a dominant paradigm for instruction caching in the many-core scenario. 
Clearly, a detailed design space exploration and analysis are needed to evaluate how micro-
architectural differences in L1 instruction cache architectures may affect the overall system 
behavior and IPC. 
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2.1 Shared L1 Cluster Architecture 

This section provides description of the building blocks of both private and shared instruction 
cache architectures. To help system designers to compare different L1 instruction cache 
architectures, we have developed a flexible L1 instruction cache architecture system. The 
proposed templates, written in SystemC [8], can be used either in stand-alone mode or 
plugged into PRO3D virtual platform [7]. Our enhanced virtual platform is highly modular 
and capable of simulating at cycle-accurate level an entire shared L1 cluster including cores, 
L1 instruction caches, shared L1 tightly coupled data memory, external (L3) memories and 
system interconnections. 

 

2.1.1 Processing Elements 

Our shared L1 cluster consists of a configurable number of 32-bit ARMv6 processor (ARM11 
family [10]). There are several ARMv6 instruction set simulators already available, Skyeye 
[11], SoClib [12] and SimSoc [9] are just a few representative examples. We chose the one in 
[9] as our base ISS. To obtain timing accuracy, after modifying its internal behavior to 
perform concurrent load/store and instruction fetch, we wrapped the ARMv6 ISS in a 
SystemC module. 

 

2.1.2 L1 Instruction Cache module  

The Instruction Cache Module has a core-side interface for instruction fetches and an external 
memory interface for refill. The inner structure consists of the actual memory (TAG + 
DATA) and the cache controller logic managing the requests. The module is configurable in 
its total size, associativity, line size and replacement policy (FIFO, LRU, random). 

 

2.1.3 Logarithmic Interconnect 

The logarithmic interconnect module has been modelled, from a behavioural standpoint, as a 
parametric, Mesh-of-Trees (MoT) interconnection network to support high-performance 
communication between processors and memories in L1-coupled processor clusters 
resembling the hardware module described in [13], shown in Figure 2. 
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Figure 2: Mesh of trees 4x8: empty circles represent routing switches and empty squares 

represent arbitration switches (banking factor of 2) 

 

The module is intended to connect processing elements to a multi-banked memory on both 
data and instruction side. Data routing is based on address decoding: a first-stage checks if the 
requested address falls within the intra-cluster memory address range or has to be directed 
off-cluster. To increase module flexibility this stage is optional, enabling explicit L3 data 
access on the data side while, on the instruction side, can be bypassed letting the cache 
controller take care of L3 memory accesses for lines refill. The interconnect provides fine-
grained address interleaving on the memory banks to reduce banking conflicts in case of 
multiple accesses to logically contiguous data structures. The last log2 (interleaving size) bits 
of the address determine the destination. The crossing latency consists of one clock cycle. In 
case of multiple conflicting requests, for fair access to memory banks, a round-robin 
scheduler arbitrates access and a higher number of cycles is needed depending on the number 
of conflicting requests, with no latency in between. In case of no banking conflicts data 
routing is done in parallel for each core, thus enabling a sustainable full bandwidth for 
processors-memories communication. To reduce memory access time and increase shared 
memory throughput, read broadcast has been implemented and no extra cycles are needed 
when broadcast occurs. 

 

2.1.4 L1 Tightly Coupled Data Memory 

On the data side, a multi-ported, multi-banked, Tightly Coupled Data Memory (TCDM) is 
directly connected to the logarithmic interconnect. The number of memory ports is equal to 
the number of banks to have concurrent access to different memory locations. Once a read or 
write requests is brought to the memory interface, the data is available on the negative edge of 
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the same clock cycle, leading to two clock cycle latency for conflict-free TCDM access. As 
already mentioned above, if conflicts occur there is no extra latency between pending requests, 
once a given bank is active, it responds with no wait cycles. Banking factor (i.e. ratio between 
number of banks and cores) can be configured to explore how this affects banking conflicts. 

 

2.1.5 Synchronization 

To coordinate and synchronize cores execution, we modelled two different synchronization 
mechanisms. The first one consists of HW semaphores mapped in a small subset of the 
TCDM address range. They consist of a series of registers, accessible through the data 
logarithmic interconnect as a generic slave, associating a single register to a shared data 
structure in TCDM. By using a mechanism such as a hardware test&set, we are able to 
coordinate access: if reading returns ‘0’, the resource is free and the semaphore automatically 
locks it, if it returns a different value, typically ‘1’, access is not granted. This module enables 
both single and two-phase synchronization barriers, easily written at the software level. 
Theoretically all cores can be resumed at the same time (reading broadcast the value of the 
semaphore), but there is no guarantee that this happens because of execution misalignment. 
To get tight execution alignment, we developed two fast synchronization primitives based on 
a HW Synchronization Handler Module (SHM). 

This device acts as an extra slave device of the logarithmic interconnect and has a number of 
hardware registers equal to the number of cores, where each register is mapped in a specific 
address range. When a write operation is issued to a given register, a synchronization signal is 
raised to the corresponding core suspending its execution after one cycle, when the 
synchronization signal is lowered the execution is resumed. The SHM is programmable in 
different ways from the software level via APIs. Writing to the OP_MODE register, different 
synchronization mechanisms can be enabled: if operating in SYNC_MODE, synchronization 
signals are lowered when all cores have executed the sync() API (writing to their respective 
register, increasing an HW counter inside the SHM), obtaining a cycle-accurate execution 
alignment. When operating in TWO_PH_MODE, a simple state machine inside the SHM 
distinguishes cores behaviour between master and slaves enabling a two-phases barrier. When 
the master reaches a master_wait_barrier() primitive, it is suspended until all slaves 
have reached the slave_enter_barrier(). After that, the master is awakened and is the 
only core executing until the master_release_barrier() primitive is reached, 
reactivating all slaves exactly in the same clock cycle. These APIs and the underlying HW 
mechanism offered by the SHM are fundamental for the OpenMP library described in the next 
section. 

 

2.2 Private Instruction Cache Architecture 

All the previously described architectural elements are combined together to form the private 
instruction cache architecture as shown in Figure 3. The cluster is made of 16 ARMv6 cores, 
each one has its own private instruction cache with separate line refill paths while the L1 data 
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memory is shared among them. An optional DMA engine can be used to carry out L3 to 
TCDM data transfers. Access to the off-cluster L3 memory is coordinated by the L3 BUS, 
requests are served in a round-robin fashion. On the data side all cores are able to perform 
access to TCDM, L3 memory and eventually to HW semaphores or SHM. The logarithmic 
interconnect is responsible of data routing based on address ranges as already described in the 
previous section. Default configuration for the private instruction cache architecture and 
relevant timings are reported in Table 1. 

 

 
Figure 3: Cluster with private L1 instruction caches 

 
 

Table 1: Default private cache architecture parameters and timings 

PARAMETER VALUE 

ARM v6 cores 16 

I$ size 1 KB 

I$ line 4 words 

thit = 1 cycle 

tmiss ≥ 59 cycles 

TCDM banks 16 

TCDM size 256 KB 

L3 latency 50 cycles 

L3 size 256 MB 
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2.3 Shared Instruction Cache Architecture 

Shared instruction cache architecture is shown in Figure 4. From the data side there is no 
difference between the private architecture except for the reduced contention for data requests 
to L3 memory (line refill path is unique in this architecture). Shared cache inner structure is 
represented in Figure 5. A slightly modified version of the logarithmic interconnect described 
in the previous section (the first stage of address decoding is disabled) connects processors to 
the shared memory banks operating line interleaving (1 line consists of 4 words). A round 
robin scheduling guarantees fair access to the banks. In case of two or more processors 
requesting the same instruction, they are served in broadcast not affecting hit latency. In case 
of concurrent instruction miss from two or more banks, a simple MISS BUS handles line 
refills in round robin towards the L3 BUS. 

 

 
Figure 4: Cluster with shared L1 instruction cache 
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Figure 5: Shared instruction cache architecture 

 
 

Table 2: Shared cache architecture parameters and timings 

PARAMETER VALUE 

I$ size 16 KB 

I$ line 4 words 

thit ≥ 1 cycle 

tmiss variable 

 

2.4 Software Infrastructure 

In this section we briefly describe the software infrastructure: first compiler and linking 
strategies used to compile and allocate all the data needed for the execution of all benchmarks. 
In the second part we will introduce our custom implementation of the OpenMP library, 
developed to run on the proposed target architectures. 

 

2.4.1 Compiler and Linker 

Before describing compiling and linking strategies applied for our benchmarks, it is of 
primary importance to introduce the memory map seen by all processors in the architecture. 
Figure 6 shows the global memory map of one cluster, in which it is possible to distinguish 
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two memory regions: the L3 memory region (256 MB) and the TCDM memory region 
(256KB). The first is the off-chip memory used to store the executable of the applications, and 
data too big to be stored in the on-chip data memory. The TCDM region, mapping the shared 
data cache, is in turn divided in three sub-regions: LOCAL_SHARED, STACK and HEAP. 

 
Figure 6: Cluster global memory map 

 

The LOCAL_SHARED region is intended to maintain variables of static size (known at 
compile time) explicitly defined to be stored in the TCDM memory. To force the allocation of 
a variable in the on-chip data memory we combined the use of a linker script and gcc 
attributes. We defined a new section in the ARM binary, namely .local_shared, used to 
contain variables to be stored in this region of the memory map. The STACK region is defined 
to maintain the stack of all 16 processors, with 4K assigned to each of them. Each processor 
calculates its own stack top at simulation startup using a combination of linker script and an 
assembly boot routine. Finally, the HEAP region is used for dynamically allocated structures. 
The allocation is allowed through the shmalloc function, provided by the MPARM 
applications support (appsupport). 

 

2.4.2 Custom OpenMP Library 

To parallelize our benchmarks we used a custom implementation of the OpenMP APIs for 
parallel programming, adapted to run on our MPARM based architecture. The OpenMP 
programming paradigm is based on two different parallel constructs: parallel for and parallel 
sections. The first allow the exploitation of SIMD or SPMD parallelism, the iterations of the 
for cycle are divided in chunks and assigned to the available cores. The second describes task 
parallel sections of a program, each core can execute a different portion of code so a different 
task. To tailor these two constructs to the target architecture it is necessary to consider that our 
software infrastructure has no operating system. In our implementation all cores execute the 
same binary file as a single process running on each processor, and the work performed is 
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differentiated according to the processor id. The Master-Slave mechanism on which OpenMP 
is based is realized using the two-phase barriers described in Section 2.1.5. We also had to 
modify the compiler (GCC 4.3) to transform OpenMP annotations in a correct binary form for 
the MPARM architecture. The compiler has to create all the structures needed to run a certain 
application and to differentiate the work to be performed by all processors, using 
appsupport’s functions. Our OpenMP runtime has a thin software layer based on a set of 
shared structures used by the processors to synchronize, share data and control the different 
parallel regions of the applications. All these structures are stored in on-chip TCDM memory 
using both statically (LOCAL_SHARED) and dynamically allocated structures (shmalloc), 
some are also protected by a lock which is implemented via the hardware semaphores 
described in Section 2.1.5. 

2.5 Architecture characterization 

As already outlined in previous sections, we considered a cluster made of 16 ARMv6 cores 
connected through a low latency logarithmic interconnect to a multiported, multibanked 256 
KB TCDM memory. On the instruction side, private and shared architectures differ in the 
cache architecture. An off-cluster (L3) 256 MB memory is accessible through the data 
logarithmic interconnect or through the line refill path. Our investigations focus on varying 
the total instruction cache size, and hereafter the L3 memory latency. 

2.5.1 Microbenchmarks 

In this section we present the results of three synthetic benchmarks intended to characterize 
both architectures and to highlight interesting behaviors. The synthetic benchmarks were 
written using Assembler language in order to have complete control of the software running 
on top of the architectural templates. They consist of a set of iterated ALU or MEMORY 
instructions performed to highlight a specific behavior. All the synthetic benchmarks share the 
common structure shown in Listing 1 below. 

 

       mov r6, N_LOOP 

       mov r5, #0 

_loop: cmp r5, r6 

       blt _body 

       b _end 

_body: ... 

       add r5, r5, #1 

       b _loop 

_end: ... 

Listing 1 : Synthetic benchmark structure 
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The performance metrics considered here are the cluster IPC (IPCc, 0 < IPCc ≤ 16) and its 
average value, calculated as the number of instructions executed by all the processors divided 
by the number of cluster execution cycles.  

Cold misses: The body of this benchmark consists of only ALU operations (i.e. mov r0, 
r0) leading to a theoretical IPCc = 16 (and average IPC = 1) for both architectures. The plot 
in Figure 7 shows on the Y-axis the cluster average IPC while X-axis reports how many times 
the loop is executed. Increasing N_LOOP both architectures tend to the theoretical value, but 
the private architecture starts from a lower IPC due to the heavy impact of cold misses 
serialization (16 cores contending for L3 access). 

 

 
Figure 7: Private vs Shared architectures IPC with only ALU operations 

 

Conlict free TCDM accesses: This benchmark adds the effect of TCDM access. As already 
mentioned before, in case of conflict free access, TCDM latency is two cycles leading to a 
single cycle stall between two consecutive instruction fetches. The loop is iterated a fixed 
number of times (4K in order to lower cold misses effect) and has a variable number of 
memory operations inside its body. We are considering a banking factor of 1, allowing every 
core to access a different bank without conflicts. The plot in Figure 8 shows on the Y-axis the 
average cluster IPC while on X-axis varies the percentage of memory instructions over the 
number of instructions the loop is made of. Both architectures are affected in the same way, 
with IPC tending to the asymptotic value value of 1/21 (and cluster IPC respectively to 8 

                                                 
1 A program consisting of only ALU (1 cycle) or MEMORY (2 cycles for TCDM access) operations gives a per-
core IPC = (Nalu + Nmem)/(1·Nalu+2·Nmem). Increasing Nmem/Nalu ratio, leads to an asymptotic value value of 1/2 . 
Cluster IPC, in this case of perfectly aligned execution, is IPCc = 16·IPCi and its average is equal to the IPC of a 
single core. 
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because of any conflict leading to misalignement). Private architectures as an initial lower 
IPC due to the cold misses effect discussed in the previous paragraph. 

 

 
Figure 8: Private vs Shared architectures IPC with conflict free TCDM accesses 

 

Conflicts on TCDM accesses: This benchmark adds another aspect of TCDM accesses: 
conflicts. Conflicting accesses to the same bank increase TCDM latency thus affecting IPC. In 
this scenario we considered a realistic ratio between memory and ALU operations of 20%. As 
before, the loop is iterated 4K times to reduce cold misses effect. The plot in Figure 9 shows 
on the Y-axis the cluster IPC while on the X-axis varies the percentage of memory accesses 
creating conflicts on the same bank. It is interesting to notice that, while there are no conflicts 
on TCDM, the shared architecture performs better the private one because of its intrinsic 
lower miss cost, in presence of TCDM conflicts the execution misalignment penalizes the 
shared cache architecture increasing the average hit time. It is important to underline that just 
a single conflict creates execution misalignment. To explain the sharp reduction of the IPC for 
the shared cache due to TCDM conflicts, let us consider a simple program consisting of 16 
instructions. Before any TCDM conflict occurs, the execution is perfectly aligned leading to 
synchronous instruction fetching. The conflicting access in TCDM leads to a single-cycle 
misalignement among all cores in the next instruction fetch.  
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Figure 9: Private vs Shared architectures IPC with conflictingTCDM accesses 

 

As shown in Figure 10, assuming a cache line is made of 4 32-bit words, there will be 4 
groups of 4 processors accessing the same line (i.e. bank) but requesting instructions at 
different addresses. When this situation arises, the average hit time increases from 1 cycle 
(concurrent access) to 4 cycles (conflicting requests are served in a round-robin fashion). This 
particular case clearly shows how this architecture is sensitive to execution misalignment. 

 

 
Figure 10: Misalignment in instruction fetching for shared cache 
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This phenomenon can stand out in an even worse case when the 4 blocks of instructions that 
are fetched by processors reside in the same bank (situation depicted in Figure 11). This leads 
to the worst-case for instruction fetch, increasing average hit time from 1 to 16 cycles. 

 

 
Figure 11: Worst case for instruction fetching in shared cache 

 

2.5.2 Real Benchmarks 

In this section we compare the performance of the private and shared I$ architectures by using 
two real applications, namely a JPEG decoder and a Scale Invariant Feature Transform (SIFT), 
a widely adopted algorithm in the domain of image recognition. In particular, our aim is to 
evaluate the behavior of the two target architectures when considering different types of 
parallelism at the application level. We thus parallelized our benchmarks with OpenMP, and 
considering three different examples. The first example expresses data-parallelism at the 
application level. Thus we focused on the two data-independent computational kernels in 
JPEG: Dequantization (DQTZ) and Inverse Discrete Cosine Transform (IDCT). With this 
parallelization scheme all processors execute the same instructions, but over different data 
sets. In the second example we adopt pipeline parallelism in the same JPEG application, 
where each of the four stages of JPEG – Huffman DC, Huffman AC, Dequantization, IDCT –
is wrapped in an independent task assigned to a processor. To keep all the processors busy we 
execute four pipelines in parallel. 

The third example considers three main kernels from SIFT: up-sampling, Gaussian 
convolution, and difference of Gaussians, all leveraging data-parallelism. In relation with the 
JPEG data parallel application, SIFT is composed of more complex computational steps that 
can stress the cache capacity causing more misses. 

In what follows we carry out two main experiments. We evaluate the performance by (i) 
varying the cache size and (ii) the L3 latency. Figure 12 shows the results for the first 
experiment. Here we consider a fixed latency of 50 cycles for the L3 memory, and we vary 
the cache size. Focusing on the plots on the top part of the figure, for each of the three 
benchmarks and for the two architectures we show execution time, normalized to the slowest 
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value (i.e. the longest execution time for that benchmark). Looking at the data parallel variant 
of JPEG it is possible to see that the shared cache architecture performs worse than the private 
cache architecture. We would expect the SIMD parallelism exploited by this application to be 
favoured on the shared cache architecture, so this finding is seemingly counterintuitive. The 
reason for this loss of performance is to be found in an increased average hit cost, due to the 
banking conflicts in the instruction cache described in the previous section. So if we 
mathematically model the overall execution time of an application as  

NH · CH + NM · CM   (1) 

where NH and NM represent the number of hits and misses, and CH and CM represent the 
average cost for a hit and for a miss, CH may be higher than 1 for the shared cache. To 
confirm this assumption we report average cache hit ratio (left Y-axis, solid lines) and cost 
(right Y-axis, dashed lines) in the plots on the bottom part of Figure 12. It is possible to see 
that the average cache hit cost for the shared cache architecture is ≈ 2.4 cycles, while the 
number of misses is negligible (miss rate = 0.003%). As a consequence, the right-hand part of 
the formula above does not contribute to the overall execution time. To understand the 
absence of cold cache miss impact we analyzed the disassembled program code. The 
Dequantization kernel consists of a loop composed by a few tens of instructions, while the 
IDCT kernel loop contains roughly 200 instructions. Overall these results in a hundred misses, 
and no capacity misses are later experienced. Due to the SIMD parallelism all cores fetch the 
same instructions, thus only the first core executing the program incurs cold cache misses. 

Instruction fetch from the remaining cores always results in a hit. In the private cache 
architecture, on the contrary, each core individually experiences 104 misses for cache sizes of 
32 and 64 Kbytes, while around 400 for 16 Kbytes. These results in a cluster miss rate (total 
number of misses over total number of instructions) of 0.05% for the private cache and 
0.003% for the shared cache. 

For the SIFT application the difference in the number of misses between the shared and the 
private architecture is major, as we can see in Figure 12. In this case, due to the high average 
miss cost, the shared architecture provides best results despite the high average cost of an 
instruction hit (more than 2.25 cycles). Indeed, the average cost of a miss is around 800 cycles 
for the private cache (any size), while for the shared cache it is around 300 cycles. Again, this 
is due to the fact that for the private cache multiple refills from different cores are serialized 
on the L3. 

For the JPEG pipelined application, the shared cache has a miss rate of 0.03% against 0.3% 
(64 Kbyte) of the private cache. Moreover in this case the shared cache has lower average 
costs for a hit (around 1.5 cycles) in respect with the other applications. The shared approach 
delivers 60% faster execution time for small cache sizes (16K), which is reduced to ≈ 10% for 
bigger caches. We must distinguish when an instruction is missed for the first time or not. In 
the first case we identify it as cold miss, while in the second case as a capacity miss. Tab. III 
shows the number of the capacity misses on the total number of misses in percentage for the 
private cache architecture across all the applications. The shared cache architecture can better 
exploit the total cache size, then it experiences no capacity miss. Figure 13 shows the results 
for the second experiment, where we keep a fixed cache size of 32KB and change the latency 
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of the L3 memory. The plots on the upper part show normalized execution time (to the 
slowest, as before), whereas the plots on the lower part show the average cost of a miss. 
Overall, it is possible to see that for L3 latency values beyond 100 cycles the shared cache 
architecture always performs better than the private cache architecture. 

Considering Eq. 1 again, CM is the parameter which is mostly affected by the varying L3 
latency. In particular, the term NM × CM linearly increases with the L3 latency as we can see 
on the lower part of Figure 12. In the data parallel applications (first JPEG variant and SIFT), 
the average cost for a miss in the private cache architecture sharply increases with the L3 
latency, whereas the same curve for the shared cache has a much smaller slope. This is due to 
the fact that private caches generate much more traffic towards the L3 memory (16 line-refill 
requests against a single refill needed by the shared cache). Then, despite the very low 
number of misses for the JPEG data parallel application, their contribution accounts for 50% 
of the overall execution time in Eq.1. Regarding the pipelined JPEG application, different 
from the other examples the average miss cost is slightly higher for the shared cache. 
However, the miss rate for the shared cache is around 0.02%, while for the private cache it is 
around 0.2%, thus the shared architecture achieves slightly faster execution times. 

 

Table 3: Number of capacity misses on total number of misses in percentage for the 
private cache architecture across all the applications and the cache sizes (Bytes) 

 JPEG par JPEG pipe SIFT 

Size 16K 73% 88% 86% 

Size 32K 5% 41% 84% 

Size 64K 5% 4% 52% 
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12 :  Figure 12: Impact of varying the cache size for different benchmarks 
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Figure 13: Impact of varying the latency of L3 memory for different benchmarks 



Public Programming for Future 3D Architectures with Manycore 

PRO3D – 248776 24/41 Tuesday, April 03, 2012 at 19:32 

 

2.5.3 Frequency comparison 

As a last experiment we want to investigate how faster the private cache design should be 
clocked to deliver a similar performance to that achieved with the shared cache architecture. 
We considered as baseline configuration an L3 latency of 150 cycles and an Instruction cache 
of 32 KB. To carry out this comparison increasing the frequency of the clock within the 
cluster, we kept constant the L3 latency: our default Tclk is 10 ns leading to 1500 ns. The plot 
in Figure 14 shows on the Y-axis the ratio between shared and private execution time for the 
benchmarks described in Section V-B, while on the X-axis varies the percentage of frequency 
speedup. 

 

 
Figure 14: Frequency comparison of private and shared cache architectures 

 

Increasing cluster clock frequency has significant effect only for JPEG parallel while private 
architecture is quite insensitive for both SIFT and JPEG pipeline benchmarks. To explain 
such behavior we have to look at the execution time breakdown. A faster clock inside the 
cluster affects hit time and TCDM latency but has negligible effect on miss latency 
(dominated by L3 latency) and L3 data accesses. Tab. 5 shows execution time breakdown for 
all benchmarks. 
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Tab 1 : Execution time breakdown for JPEG parallel, JPEG pipelined and SIFT 
benchmarks 

 HIT & TCDM MISS & L3 DATA 

JPEG par 51.13% 48.87% 

JPEG pipe 14.72% 85.28% 

SIFT 0.96% 99.04% 

 

A ≈ 51% of execution time affected by cluster clock frequency gives the performance 
improvement of the private architecture for JPEG parallel. The same is not true for JPEG 
pipelined and SIFT benchmarks. This behavior underlines cluster performance is not affected 
by clock frequency when the program running has the execution time dominated by L3 
memory accesses. 
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3 DRAM Subsystem for 3D integrated SoCs 
The performance of standard memory systems, such as the JEDEC DDR or LPDDR (low 
power DDR) standard, both in terms of access latencies and available bandwidth, has not kept 
up with the increases in on-chip computation rates, and this gap has generally been referred to 
as the memory wall [14]. By integrating multiple memory controllers with a large number of 
IOs for their channels and high-speed signaling the on-chip memory bandwidth can be 
increased. The number of package pins is however, even for high-end designs with very 
sophisticated packages, limited by packaging technology, as well as by the need to dedicate 
power and ground pins [15]. Also the energy per bit consumed for going off-chip is many 
times higher than the one required for on-chip accesses, as complex and power hungry IO 
transceivers are needed to deal with the electrical characteristics of interconnections between 
chips in conventional packages. So achieving peak bandwidths beyond 6.4 GB/s is very 
difficult using the current LPDDR or LPDDR2 architectures with cost effective packaging 
solutions such as Package-on-Package (PoP) [16]. 

To overcome the pin-limited performance growth [15], the power vs. bandwidth dilemma and 
the memory wall 3D integration and 3D-stacked DRAM have been proposed as a very 
promising solution. 3D-stacked DRAMs reduce the distance between CPU and external 
DRAM from centimeters to micrometers and improve the bandwidth and access latencies - 
but more importantly, they provide a major boost in energy efficiency in comparison to 
standard DRAM devices, such as DDR2, LPDDR2 or DDR3 [17]. In the last years 3D 
integration of ICs, especially of DRAMs, received tremendous attention [17]–[25]. We 
recognized that with the WIDE IO DRAM (4x 128 IOs) standard a much higher bandwidth (at 
200MHz: 12.8 GB/s) is available for mobile SoCs. However if the full bandwidth is not 
needed during a read or write, a lot of data is wasted and also the energy for the transfer. 

We focus on the energy optimization of the 3D-DRAM subsystem for future terminals. We 
propose a flexible bandwidth and burst length adaption for the 3D-DRAM and the controller. 
With this we are able to handle a large range of access sizes from fine-grained (32b) to 
coarse-grained (1Kb). 

The main contributions of the work done in this WP are: 

1) the co-optimization of controller and 3D-DRAM, 

2) the fine-grained access to the 3D-DRAM which leads to power savings and an energy 
proportional access, 

3) the implementation of the 3D-DRAM controller which covers all features needed for 
such flexible interface. 

Recent products [26], demonstrators [18], announcements [17,27] and investigations [21]–
[25] have shown the performance, energy and form factor advantages of 3D integration by 
using wide-IO buses and TSV interconnects. Facchini et al. [21] mainly focus on the 
optimization of the interface between processor and memory (e.g., DRAM). The internal 
structure of the memory subsystem is untouched and not optimized. Instead of focusing only 
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on the interface [21] we put emphasis on the complete 3D-DRAM subsystem. Therefore we 
re-architected and optimized the channel controller and 3D-DRAM together. 

In [25] Loh uses a so-called “true-3D” configuration based on Tezzaron’s 3D technology [28] 
for performance and power evaluations. However Tezzaron’s 3D-stacked DRAM approach 
requires an additional chip layer in logic technology to speed up the interface and also to 
reduce the access time to the DRAM. Following the 3D-DRAM integration taxonomy 
proposed by [21], we focus on scenario 3/4 (CMOS IOs). To be conforming to the WIDE IO 
JEDEC standard, we use LVCMOS (low-voltage CMOS - 1.2V) signaling for the connection 
to the channel controller. Therefore we removed the complex IOs (SSTL) for area, 
performance and power calculations. Our analysis and estimations of the re-designed 3D-
DRAMs are based on DRAM technology data from Inotera, Qimonda and Winbond. These 
data sets enable us to accurately predict power, performance and area for different 3D-DRAM 
architectures, as well as to optimize the internal structure and organization.  

Memory controllers manage the architectural and circuit level interface between processors 
and DRAM. State-of-the-art DRAM controllers [29] are still designed for narrow off-chip 
interfaces. They are quite complex components and deploy many complex features to 
maximize the exploitable interface bandwidth. A DRAM controller can be coarsely split in 
two parts, front-end and back-end, also called channel controller. The front end includes a 
multi-port arbitration interface and IO queues with reordering capabilities to improve power 
consumption and access latency. 

A similar approach has been presented by [30]. This WIDE IO multi-channel controller 
follows a straight forward approach, similar to [29], and does not investigate on real benefits 
of the WIDE IO (3D stacked technology) where the number of DRAM IOs is increased to 
128-bit per channel [26]. 

Many published works describe advanced DRAM frontends, see [31] for a survey. However, 
we assume a state-of-the-art front-end which delivers memory transactions to the channel 
controller, and we focus on adaptation of the channel controller to wide 3D-DRAM interfaces.  

 

3.1 Subsystem Architecture 

This section gives an overview about the complete subsystem, shows details of the controller 
and 3D-DRAM, as well as describes the used 3D-DRAM configurations. The physical 
placement and organization of the 3D-DRAM subsystem with vertical DRAM channels is 
depicted in Figure 15. 
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Figure 15: 3D-DRAM subsystem - vertical channel architecture, using up to 8 DRAM 

layers for a 3D-DRAM cube 

 

The functional representation of the 3D-DRAM subsystem is shown in Figure 16, which 
consists of a 3D-DRAM memory controller and 3D-DRAM channels.  

 

 
Figure 16: 3D-DRAM subsystem - functional overview (including front-end (FE) and 

back-end (BE) of the controller, the request channels (RC) and the channel controllers 
(CC) 

 

The controller is divided into frontend (FE) and back-end (BE). The front-end is responsible 
for request handling, including FIFO-buffers for each request channel (RC), the arbitration 
and scheduling. The back-end contains the channel controllers (CC) for each 3D-DRAM 
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channel and is responsible for the DRAM command encoding and communication. Each CC 
is attached to the 3D-DRAM channels via a very flexible interface which provides up to 128 
data IOs to each 3D-DRAM channel. The aim of this flexible interface is to adjust the 
bandwidth to/from the 3D-DRAM depending on the incoming request (RC 0 to 2). We have 
identified three typical request and bus sizes for integration of this subsystem into a 
heterogeneous SoC: 

• 32-bit, AHB/AXI (ARM processor, RC 0) 

• 64-bit, Graphics/Imaging, (mobile GPU, RC 1) 

• 128-bit, Video Encoder, (HD processing core, RC 2) 

 

3.1.1 3D-DRAM channel controller for SDR/DDR 

The channel controller is the back-end part of the memory controller, and is in charge of 
managing incoming transactions (read and write requests) coming from the front end side (e.g. 
scheduler + FIFO) and directed to a specific memory channel. This IP has been designed to 
work seamless with the 3D-DRAM flexible interface and get the maximum benefits in terms 
of power efficiency and performance. This block is highly configurable to work with several 
memory types (SDR/DDR/LPDDR) and different flavor (number of banks, IO data width, 
etc). Additionally some features can be reconfigured at run-time writing in dedicated registers.  

 
Figure 17: 3D-DRAM memory controller 
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The internal architecture of the channel controller is depicted in Figure 17 and consists of a 
first stage of buffering, a DRAM command encoder, a lite physical interface, a reconfigurable 
interface block and drivers for the DRAM ports. 

The buffering stages are needed both to provide resources to temporarily store incoming 
requests, and to synchronize data transfer when crossing a clock domain boundary (front-end 
to back-end). The front-end usually is clocked at high speed to allow complex operations like 
scheduling and reordering, while the back-end is locked to the memory frequency. 

The DRAM command encoder is in charge of decoding the incoming requests (post 
buffering) and generating the right command sequences to pre-charge a bank, to activate a 
row, perform a read or write, refresh periodically the memory, provide the startup 
configuration (LMR/EMR) and safe power up. These tasks are managed in several control 
units and scheduled by a single master control block which is in charge to synchronize these 
control units. For instance, each bank is managed by a dedicated control unit (bank controller) 
which tracks all the activity related to a specific bank (active row, type of activation, and 
timing counters) in order to maximize the performance (avoid bubbles) and minimize the 
power consumption. The flexible bandwidth adaptation is managed in each bank control unit 
and depending on the type of access, it provides for the memory the correct signaling needed 
to perform flexible data accesses (32-bit/64-bit). 

Strobe and data strobe are managed in the lite physical interface, which is in charge of 
latching incoming data from the memory (read data) in case of load, or preparing and 
dispatching write data in case of store. In case of SDR, the DRAM clock can be used to safely 
latch read data, or delivery write date. In case of DDR, a DLL is needed to create a 2X faster 
DRAM clock to safely latch and dispatch data. 

The reconfiguration logic block is used in 32/64-bit access modes, and the aim of this module 
is to selectively mask not driven data lines (during the LOAD), and compact the data in the 
pre-fetch buffer (normally pre-fetch buffer accommodate 128-bit words). Finally the last stage 
is composed by a pipe, to filter SDRAM signals from any kind of glitches, and providing 
more timing budget for inter-die traversal (from logic die to memory stack). The last stage is 
composed by dedicated IO drivers used to drive the DRAM ports through a stack of TSV and 
micro-bumps. 

 

3.1.2 3D-DRAM architecture and flexible bandwidth interface 

The investigated 3D-DRAMs are closely aligned to the new Wide IO DRAM JEDEC 
standard. Figure 18 depicts the used two different true 3D-DRAM (Wide IO) architectures. As 
in [32] explored an optimized 3D-DRAM with 8 banks consists of 8 layers (tiers) which 
corresponds to a layer per bank organization. For multiple banks per layer the optimal 
architecture must be revised and details are not shown here because of space reason.  
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Figure 18: Architectures of a 2Gb 3D-DRAM (single channel) 

 

The two architectures differ in the tile size used for a 3D-DRAM macro block to compose a 
bank. For bank architecture type (a) the tile size is 64Mb and for type (b) 128Mb. Option (b) 
has a higher area efficiency and therefore lower cost with the impact of lower performance 
(max. frequency). Architecture option (a) is very similar to the published 1Gb WIDE IO 
device of Samsung [26]. Samsung placed the TSV IO area at the bottom-right side for the 
most left channel which is given by the JEDEC standard. In Figure 19 the yellow areas with 
tile size numbers show the DRAM cell arrays, the light blue areas with stripes are occupied by 
column, row and control circuits as well as all other peripheral circuits and the brown areas, 
as indicated, are reserved for the vertical TSV connections. 

 

 
Figure 19: Flexible 3D-DRAM organization/bandwidth switching of a 128Mb bank in a 
8 bank 1Gb 3D-DRAM, operating in x128, x64 or x32 mode 
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Our 3D-DRAM architecture is characterized by an implementation of a flexible bandwidth 
interface which enables internal organization switching for the 3D-DRAM. This is shown in 
Figure 20. The 3D-DRAM is able to operate in three different configurations: 

• Native mode x128: All column select lines (16 CSLs) and all wordlines (2 WLs) are 
activated. 

• Half bank mode x64: Only 8 CSLs and 1 WL are activated. 

• Quarter bank mode x32: Only 4 CSLs and 1 WL are activated. 

 

The multiplexer circuits for switching the data chunks are placed only once on the logic die 
(channel controller). This reduces the overhead for an 8-layer 3D-DRAM cube and improves 
performance and access latency. 

 

 
Figure 20: EMR settings for the flexible bandwidth interface of 3D-DRAM 

 

To enable or disable these operating modes new Mode Register (MR) entries have to be 
defined. We have integrated them into the Extended Mode Register (EMR) as this usually 
done for new entries, see Figure 6. Additionally to the EMR settings new signals have to be 
defined for the 3D-DRAM interface in order to switch the bandwidth/organization on-the-fly. 
The functional details of those are: 

• ROW SW EN - enables during a ACT command the organization switch. 

• COL SW EN - enables during a RD/WR command the organization switch, depending 
on the value of ROW SW EN, which is stored for the each bank. 

• RC SW ADDR - address which decides on the selection of the data chunk. 
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Figure 21: Timing diagram 

 

Figure 21 shows the input timing behavior of the new interface signals related to a ACT and 
RD/WR command. If the new interface signals are enabled via the EMR and ROW SW EN or 
COL SW EN are asserted during a ACT or WR/RD command respectively, then a valid RC 
SW ADDR must be provided. 

 

3.1.3 WIDE IO DRAM Configurations 

 

The Table above shows the summary of the generated 3D-DRAM SDR and DDR 
configurations. Typical performance, area and technology data are given here. In order to be 
JEDEC conform the supply voltage is set to VDD = 1:2V for all configurations. The footprint 
for the single channel can be calculated by Afootprint = Atotal / # of layers. In contrast to [21] we 
used a TSV diameter value of 8 µm and 16 µm pitch. This diameter and pitch is a good 
compromise between reported yield and density. The diameter value is very similar to the 
ones Samsung uses in [26] d=7.5 µm but with a maximum pitch of 50 µm given by JEDEC. 
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Our TSV capacitance evaluates to 94 fF and TSV resistance to 23m by using copper as filling 
material. Overall ten different 3D-DRAM configurations were created to strengthen our 
experiments. 

3.1.4 Energy Model Correlation 

To ensure the quality of our power modeling we compared a transaction-based power 
calculator (enhanced Micron version) [33] to our power estimation based on simulation traces 
and a cycle-accurate DRAM model running these workloads. By tuning our model to the IDD 
values of the Micron data sheets for a 2Gb LPDDRx32 and LPDDR2x32 part, we achieved 
less than 1% error compared to the power values evaluated by the transaction-based power 
calculator. So we verified our power estimation method, see also Figure 22 for detailed 
correlation results. We used three workloads based on a real-time application and cache 
transactions for this correlation (low-LL, medium-ML and high-HL).  

 
Figure 22: Power model correlation 

3.2 Simulation and Traffic Generation 

 

Following simulation setup and infrastructure was implemented to verify the functionality of 
the 3D-DRAM subsystem and to run our experiments. Three different traffic generators 
emulate the workloads produced by a typical SoC platform: 

• Traffic A: 32-bit - Cache misses of an ARM - 0.1 GB/s 

• Traffic B: 64-bit - DMA accesses in a SoC - 0.8 GB/s 

• Traffic C: 128-bit - HD Video DMA accesses - 1.5 GB/s 

We used 2x the traffic generator A - to simulate a Dual-Core environment. Additionally we 
enabled 1x traffic generator B and C. B emulates an imaging unit with DMA accesses and C 
an HD video core. Altogether we created a bandwidth request of 2.5 GB/s to the 3D-DRAMs. 
For the LPDDRx32-333 and LPDDR2x32-667 based on 2Gb Micron data sheets we reduced 
the bandwidth to 750 MB/s. These generators can be tuned to simulate different load 
behaviors and scenarios, see Table below.  
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The page hit ratio (PHR) describes the relationship between bursts for which a page (activate 
a row) must be opened and bursts which are directed to an already opened page. If the PHR is 
0% then for each burst an activate command to open a new page is required. If the PHR is 
100% then all bursts are issued to an already opened page. 

 

3.3 Experimental Results 

In all experiments we present here we used a single channel of the 3D-DRAM cube connected 
to the flexible bandwidth and burst length adaption interface of the controller. We considered 
in our analysis only a single channel to put emphasis on the interface and the power savings 
per channel. Thus the results can be scaled when multiple channels or slices [17] are used. A 
single channel allows us also a fair and valid comparison to LPDDR/LPDDR2 devices. 
However, we had to scale down the applied bandwidth to 750 MB/s for LPDDRx32-333 or 
LPDDR2x32-667 devices as they support only peak bandwidths up to 1.33 or 2.66 GB/s 
respectively. 

3.3.1 DRAM Power characterization 

First we characterized the ten 3D-DRAM configurations and LPDDR/LPDDR2 devices by 
using the workload IDLE. During IDLE only AREF (Refresh) commands are sent to the 
DRAM. Figure 23 (a) shows the differences in Idle power for DDR and SDR mode. In DDR 
mode a DLL (Delay-Locked-Loop) is additionally enabled and it contributes significantly to 
the power consumption. We see also the effect that the leakage current is increased for higher 
densities. 

 
Figure 23: Power characterization of the 3D-DRAMs for DDR/SDR mode and 

comparison to LPDDR/LPDDR2 
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For the workload with a page hit ratio (PHR) of 0%, which is equivalent to 100% page miss, 
each data access to the 3DDRAM opens and closes a new row, this working mode is also 
called closed-page mode. The results for this mode are maximal 39% power savings between 
bandwidth switching enabled (SW) and disabled (NO SW) for the 2048Mb density in SDR 
mode. The average power savings of this mode for all densities and modes (DDR, SDR) are 
34.9%, see also Figure 23 (b). 

By running a second application-relevant workload with PHR = 50% the results shown in 
Figure 23 (c) are produced. The power savings for the bandwidth switching enabled mode 
(SW) are maximal 37.5% again for the 2048Mb density in SDR mode. The average power 
saving for this workload is 34.1%. 

The third workload represents an extreme version of the open page mode, because all bursts 
are going to an already opened page. So the Read and Write currents are here dominating 
here. The results are given in Figure 23 (d). The maximal power savings of 50.8% are here in 
contrast to the workloads before for the 256Mb density. This is the smallest density with only 
4 Banks. The saturation for this workload is very fast and because of the lowest power 
consumption ratio between row activation and burst (Pact + pre = Pburst) the savings become 
maximal. We achieved for the PHR100 workload an average power saving of 43.2%. 

 

3.3.2 Synthesis Results of the SDR/DDR channel controller 

In this section, we discuss the experimental results for the SDR/DDR channel controller in 
terms of power and area. To get these results, we synthesized the controller with the ST65nm 
technology library (Low Power process). The frontend flow (Multi VTH) has been performed 
with Synopsys Design Compiler in topographical mode, while the backend with Cadence SoC 
Encounter. To run the synthesis flow, we fixed the frequency on both DRAM and front-end 
side choosing 500MHz and 333MHz respectively.  

 

 
Figure 24: Power and area distribution of the 3D-DRAM channel controller 

implementation 
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As can be seen in Figure 24 the power cost (shown on the left) is dominated by clock 
distribution network (40%) and sequential elements (45% as part of buffering), while the 
combinational power impact is quite low (9%). The total power consumption (post-place and 
route) for this test case is 78mW, including the contribution of the IO drivers (6%). The total 
area cost (shown on the right) is 280K um2 and is dominated by the read and write FIFOs 
(72%) and Lite PHY (16%). Since these results are dominated by buffering resources 
(FIFOs), the impact of power and area can be reduced by decreasing the depth of these 
storage elements. 
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4 Conclusions 
Key to providing I-fetch bandwidth for cluster-based CMP is an effective instruction cache 
architecture design. We analyzed and compared the two most promising architectures for 
instruction caching targeting tightly coupled CMP clusters, namely private instruction caches 
per core and shared instruction cache per cluster. Experimental results showed that private 
cache performance can be significantly affected by the higher miss cost; on the other hand the 
shared cache has better performance, with speedup up to ≈ 60%. However, it is very sensitive 
to execution misalignment, which can lead to cache access conflicts and high hit cost. 

We presented also a new architecture for a highly energy efficient 3D-DRAM subsystem for 
3D integrated SoCs. We investigated different DRAM families. 3D-DRAM densities from 
256Mb to 4096Mb and also 2Gb LPDDR/LPDDR2 devices were characterized by four 
application-relevant workloads. We designed a 3D-DRAM channel controller which fits 
perfectly to the flexible bandwidth and burst length adaption interface of the 3D-DRAMs. By 
using this flexible interface the total 3D-DRAM subsystem consumes in the fastest 
configuration for 3D-DRAM (300MHz, 2Gb DDR) and controller (500MHz) less than 
240mW, for a workload with PHR = 50%. With very low power settings of 3D-DRAM 
(167MHz, 2G SDR) and controller the subsystem power is decreased to less than 140mW. 
The experimental results show an overall average of 37% power savings by enabling the 
bandwidth and burst length flexibility for 3D-DRAMs. 
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