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1 Introduction

The main goal of this deliverable is represented by the introduction and detailed description of
the latest improvements and extensions made on the PRO3D virtual platform in order to enable
efficient P2012-based full-system simulation for efficient and accurate architectural analysis and
design space explorations.

Driven by flexibility, performance and cost constraints of demanding modern applications,
heterogeneous System-on-Chip (SoC) is going to be adopted as the dominant design paradigm
in the various computing domains. SoC architecture and heterogeneity clearly provide a wider
power/performance scaling, combining high performance and power efficient general-purpose
cores along with massively parallel manycore-based accelerators [1, 2, 3, 4]. The idea behind
P2012 is clearly conform with this architectural template. P2012 has been indeed thought
to be coupled with an ARM-based host, which behaves as general-purpose master processor,
while the P2012 fabric as accelerator slave engine. Besides the complex hardware, generally
this kind of platforms hosts also a complicated software eco-system, composed by an operating
system, several communication protocol stacks, and various high-computational demanding user
applications.

The necessity to efficiently cope with the huge HW/SW design space provided by this sce-
nario makes clearly full-system simulator one of the most important designing tools. Full-system
simulation, which emulates the entire software stack including OSes, libraries and user-level ap-
plications, is indeed extremely useful in serving the increasing need of pre-HW development of
system software, characterizing performance bottlenecks, exposing and analyzing possible soft-
ware bugs. QEMU [6] is one of the most popular emulator platforms, since it emulates several
architectures (e.g. x86, ARM, etc.). QEMU is a fast emulation environment based on dynamic
binary translation. The binary translation represents the emulation of the instruction set of a
processor by the instruction set of another processor using code translation. The goal of the
binary translation simulators is to be very fast and functionally correct, but not to provide
information about hardware execution time. Even though QEMU can emulate a full-system,
it lacks of accurate coprocessors simulation capabilities. QEMU does not provide any ways to
take into account the simulation of a heterogeneous SoCs.

Moreover, when tackling the efficient virtual prototyping and design of such heterogeneous
complex architectural solutions, flexibility and a good level of accuracy are indeed required since
HW designers need to explore a large solution space by comparing a huge number of different
design options, so as to identify an optimized system configuration. Therefore, advances in
simulation technologies are essential to increase engineer productivity and decrease time to
market. SystemC is a well-known HW description language frequently used in this context.
However, SystemC simulation speed is very low when simulating accurate hardware models
with a full-fledged operating system up and running.

Several approaches trying to link QEMU and SystemC [7] environments have been pro-
posed as a software/hardware SoC emulation framework to leverage the strengths of QEMU
and SystemC [8, 9]. QEMU CPU emulation can be used to reproduce the behavior of target
processors while SystemC and its simulation environment can be used for the simulation HW
devices under design. QEMU already supports the use of host-mapped devices, while SystemC
supports the HW description at many abstraction levels. Although co-design can strongly ben-
efit from such a potential winning combination, several constraints make this breaking through
approach targeting complex HW/SW design space explorations extremely inefficient and lim-
ited. Previous works indeed suffer of several drawbacks, implicitly generated by the selected
interfacing paradigm. Drawbacks belong both to performance and flexibility. The optimal
approach should clearly provide an asynchronous interface with a non-blocking semantic, thus
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inherently enabling parallel execution between QEMU and SystemC environments. Moreover, a
lightweight communication and synchronization infrastructure among the two main simulation
frameworks is necessary. It also should enable the sharing of the same memory hierarchy (like
L2 or RAM).

Part of Work Package 1 of the PRO3D project focuses on the definition and development
of simulation tools for functional modeling of 3D IC, such the upcoming P2012 from STM.
In this deliverable, we present the enhancements developed on the PRO3D virtual platform
in order to enable efficient and accurate full-system simulations. We present in this report a
new emulation framework based on QEMU and 3D-MPARM which overcomes the mentioned
issues of previous works. The main outcome of our approach has been the possibility to have
QEMU and 3D-MPARM running effectively in parallel, allowing the programmer to catch the
real behavior of the architecture and to design its software accordingly. In order to achieve
our purposes, we have enhanced the PRO3D virtual platform (i.e. 3D-MPARM) with a series
of extensions aimed at enabling efficient P2012-based full-system simulation for architectural
analysis and design space explorations.
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2 Conceptual Architecture

During the last years, ever a large number of silicon manufacturers are spending high design
efforts to create architectures able to provide an ever increasing computing power at a very
reduced power budget. This trend is driven by modern applications, requiring increasing real-
time computing capabilities and facing at the same time with shrinking constraints on power
budget, and of course on device’s battery lifetime. Examples and results of this evolution are
AMD Fusion [1], NVidia Tegra [2] and P2012 [4]. The mentioned examples feature a general
purpose multi-core processor accompanied by a more energy efficient and powerful many-core
accelerator. In those kind of systems the general purpose processor is intended as a coordinator
and is in charge of running an operating system, while the many-core accelerator is used to
speed up the execution of computing intesive applications, or parts of them. Although their
great computing power, accelerators are not able to run operating systems due to the lack of all
needed surrounding devices and due to the simplicity of their micro-architectural design. The
general purpose processor and the accelerator often share the main memory.

The architecture targeted by this work is inspired by the mentioned examples and composed in
detail as follows:

e ARM Versatile Platform Baseboard;
e P2012-based accelerator.

The ARM baseboard is emulated by QEMU and is composed by an ARM926 processor,
featuring an ARM v5 ISA, and a group of peripherals needed to run a full-fledged operating
system (e.g. uarts, network controllers, real time clock). The P2012 accelerator is modeled using
the PRO3D virtual platform based on MPARM [5], a SystemC based cycle-accurate MPSoC
simulator. As shown in Fig. 1la the ARM processor and the co-processor share a portion of the
external memory (64MB over a total of 256MB), which is also used as communication medium
between them. The co-processor target architecture is shown in Fig 1b, it features clusters (only
one depicted in the figure) of several homogeneous cores with segregate I caches and all sharing
a Tightly Coupled Data Memory (TCDM) accessible via an interconnection medium.
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Figure 2: a) Sequentialized execution. b) Parallel execution.

3 Implementation

In this section we provide a complete description of the extensions introduced in the PRO3D
virtual platform, as well as the required QEMU modifications. As first the idea behind the
implementation will be introduced and then each element is described in detail.

3.1 Basic Idea

As introduced in Section 2 the main interest of software developers is focused on the interation
between the host processor and the co-processor. In a real platform those two actors can
execute in an asynchronous and parallel fashion and this behavior has to be captured when
designing a virtual platform. The basic idea is then to design a virtual platform in which the
host processor system and the accelerator can run in parallel, this implies having QEMU and
3D-MPARM running on different threads or processes. Other approaches interfacing QEMU
with SystemC models apply normally two possible schemes: wrapping QEMU as a SystemC
module or adding to QEMU a device in charge of starting the SystemC simulation whenever
needed. The first approach is detrimental for QEMU’s performance, leading to a complete lost
of binary translation benefits. While the second approach leads to the sequentialization of the
execution of QEMU and the SystemC model (Fig. 2a). Such type of implementation is obviously
unacceptable when the focus is the interaction between host processor and accelerator.

Our proposal is to have QEMU and 3D-MPARM running effectively in parallel, allowing the
programmer to catch the real behavior of the architecture and to design its software accordingly.
Another achievement of this work is the definition of a time synchronization mechanism, able
to provide a global simulation time for the entire full-system virtual platform.

3.2 Having QEMU and 3D-MPARM running in parallel

Before having 3D-MPARM and QEMU running in parallel it is necessary to understand wether
to use two different processes or threads. Taking a look at the target architecture we can see that
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the host processor and the co-processor need to share a portion of the external memory. Both
QEMU and 3D-MPARM as standalone applications instantiate an external memory device,
where the effective memory data is designed as a byte array. Due to major flexibility and also
a major integration inside the platform, we decided to keep the global external memory of the
platform inside QEMU’s infrastructure, modifying 3D-MPARM accordingly. What we did is to
pass 3D-MPARM, at platform startup, the pointer to QEMU’s memory array shifted by 192MB
(offset to shared memory segment). Given this assumption it is obvious why our choice felt on
using two different threads instead of processes, we of course need to share the memory and
heavy processes cannot do that.

The main simulation environment is essentially represented by QEMU, which during the
platform initialization phase creates another thread in charge of executing 3D-MPARM and to
start the SystemC simulation. Here we had to modify the Versatile PB initialization code in
order to add the creation of 3D-MPARM’s thread, passing at creation time a set of parameters
comprising the pointer to QEMU’s external memory, correctly shifted to the start of shared
memory segment. Whe chose to split the main memory in two segment to protect the Linux
operating system memory. The portion of memory which is not shared between QEMU and
ARM is also accessible only from the host processor, avoiding any possible interference with
possible co-processor’s accesses.

The main modifications to obtain the parallel execution have been applied on 3D-MPARM. It
is a SystemC model and is not meant to run on multithreaded applications. A standard SystemC
model is a normal C++ application which has the main() method substituted by the sc_main()
method, this because the main of the final application is hidden inside the SystemC library. So,
when you run a SystemC simulation the execution starts from the main inside the library which
in turn will call the sc_main of your model. This behavior is not good fo our goal, we want to run
the SystemC simulation from another thread created by QEMU and the only main function
allowed is the one of QEMU. To overcome this problem we slightly modified the SystemC
library sources, removing the main function and introducing the init_systemc_main() method.
After this modification, when 3D-MPARM thread starts it also calls the init_systemc_main()
launching in turn the SystemC simulation. It is important to highlight that the 3D-MPARM
SystemC simulation starts immediately at QEMU startup, and the accelerator starts executing
the binary of a firmware (until the shutdown), in which all cores are waiting for a job to execute.
This firmware will be described in detail in Section 3.4.2.

3.3 Time synchronization

QEMU and 3D-MPARM run independently in parallel with a different notion of time, leading to
only functional simulations due to the lack of a global time management. Application delevolpers
often need to understand how much time, over the total application time, is spent on the host
processor or on the accelerator. Also, without a global simulation time it is not possible to
appreciate execution time speedups due to the exploitation of the many-core accelerator.

To manage the time synchronization between the two environments it is necessary that both
QEMU and 3D-MPARM have a time measurement system. As QEMU does not provide this
kind of mechanism we instrumented it to implement a clock cycle count, based on instructions
executed and memory accesses performed. On the contrary for 3D-MPARM there is no need
for heavy modifications because it is possible to exploit the SystemC simulation time.

The implemented synchronization mechanism is based on a threshold protocol acting on
simulated time: from an initial time ¢ both QEMU and 3D-MPARM start counting the number
of clock cycles elapsed, with each actor maintaining its own count. At fixed synchronization
points, cycle counts from QEMU (cq) and 3D-MPARM (cys) are multiplied by the respective
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clock period (pg and pys) and compared. Given a time threshold h if |cg * pg — ear * par| > b,
one of the two systems is forward in the future in respect to the other and will be blocked until
lcg * pg — cm * pur| > 0.

One can comment that with the proposed mechanism the virtual platform is globally slowed
down, due to synchronization points. This is true and is the price to pay for increasing accuracy.
Anyhow programmers not always need time measurements during applications design, and we
provide an interface to activate and de-activate time synchronization. Another possible comment
is related to accuracy. Stopping the platform with a higher simulation time leads to inaccuracy
due to possible delays on events exchanged by QEMU and 3D-MPARM. Consider as an example
that QEMU is faster and is waiting an event from 3D-MPARM. If while waiting for the event
the simulated time gap becomes higher than the threshold, QEMU is stopped and 3D-MPARM
goes ahead running to fill the gap and produce the event. When QEMU is resumed it sees
the event arrived at simulation time t,, while 3D-MPARM produced it at ¢, < ¢,. If ¢, < ¢,
the global simulation time has an error equal to ¢, — t,. The error depends on the value of
the threshold and is anyway acceptable because with this virtual platform we are not targeting
hardware developers, so we don’t need cycle level accuracy. It is important to highlight that
this error does not introduce functional inconsistency, but only a skew on the simulation time.
Results of slowdown due to time synchronization will be presented in Section 4.

3.3.1 Instrumenting QEMU

QEMU is a machine emulator able to model different architectures at a very high level of
abstraction and is intended to run full-fledged operating systems with a high performance. At
the actual state it is not possbile to extract from QEMU a cycle count based on instruction
executed and memory accesses. To extract a meaningful cycle count during the execution we
need to take into account at least the pipeline model, to calculate instructions duration, and the
memory model (at least caches). We modified QEMU TCG (Tiny Code Generator) to calculate
at runtime the cycles spent from the ARM processor. During execution QEMU translates
blocks (basic block) of target instructions in an intermediate representation which is in turn
translated to host machine code, saved into TCG cache, and then executed. With each target
instruction translated in one or more intermediate instructions. Our Intervention happened
on the first stage of translation: during the translation of each basic block, instructions are
taken one after the other and translated in the corresponding intermediate representation. In
this phase we introduced a function which is able to calculate the number of cycles needed to
execute each instruction. Starting from the binary representation of instructions and taking
instructions timing from the ARM926 manual, this function is able to calculate the number of
cycles needed to execute a certain instruction. The count is also taking into account registers
interlock. Once the cycle count is obtained we save it in a tcg temporary variable, inside the
translated block, which will be available during the execution of each translated block. Figure
3 shows the modifications applied to the translated block when saving cycles count, note that
no extra code is added to the block. This solution fully exploits QEMU’s TCG cache because
in case of multiple execution of the same block, instructions duration does not need to be
re-calculated.

During the execution of translated code a variable internal to QEMU, sim_time, maintains
the cycle count of the ARM processor and is incremented at each ARM instruction executed.
The increment is based on the values already annotated inside the translated block. Once the
target code is translated into the host code there is no way to add extra function call inside of it,
so there is no way to add the function call which updates sim_time. This modification have to be
done before, during the first traslation of ARM code into intermediate code. QEMU provides a
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Figure 3: Modifications to qemu’s translated blocks due to instructions cycle count annotation

mechanism to introduce function calls inside a translated block, called helper functions. Helper
functions can access all internal structures of QEMU (e.g. the sim_time variable), and all infor-
mations embedded in a translated block (e.g. the temporary tcg variable ins_cycle_count). To
define a helper function a macro DEF_HELPER ( frame, tr, tp1, tp2, .-, tpn) is used, where n is
the nubmer of parameters, f,ume is the name of the function, ¢, is the type of return parameter
and t,, is the type of the n-th parameter. To invoke an helper function during the execution
of a translated block, it is sufficient to insert gen_helper_f() during the translation of the block
itself.

Now let’s assume that our defined helper is named helper_update_count (), it is sufficient
to put gen helper update count() during the translation of each ARM instruction to have
it called at runtime for each executed ARM instruction. The result of each call is to add the
value contained in the tcg temporary variable (ins_cycle_count) to the global cycle count
(sim_time).

Once QEMU is able to calculate a cycle count, this value must be used for the synchro-
nization protocol. As already explained in last paragraph QEMU and 3D-MPARM exchange
simulated time at fixed synchronization points, defined for this work at each executed ARM
instruction. The synchronization happens using QEMU’s helper functions, at each ARM in-
struction the helper is called passing as an argument the actual QEMU’s cycle count. The
implementation of this function is straightforward, it invokes a call-back function exposed by
3D-MPARM passing to it the simulation time measured until that moment. In case of need
QEMU will be stopped waiting for 3D-MPARM. The implementation of the call-back function
will be discussed in the next paragraph.

A final note regards the performance. Our solution implies the execution of two helper func-
tion calls per each ARM instruction executed by QEMU, it of course slows down the simulation
speed of QEMU and so of the entire platform. Note that the syhchronization mechanism is not
always needed, it is sufficient to consider the case when a programmer only wants to test the
functional correctness of his application. In that case simulation speed is very important while
the accuracy is not. We provide a set of APIs allowing the programmer to enable and disable
this mechanism, and to access the simulation time from a user-space application running on
top of QEMU. The synchronization is disabled as default parameter, in which case no helper
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function is inserted into translated blocks.

3.3.2 Instrumenting 3D-MPARM

For 3D-MPARM, modifications needed are really lightweight. It is already able to measure
time and we only needed to implement two call-back functions used from QEMU side, and a
simple module used to stop 3D-MPARM in case of need and to count clock cycles elapsed when
synchronization is enabled. The call-back function, executed by QEMU’s thread, is in charge on
implementing the synchronization mechanism. If QEMU is in advance, it will be stopped until
the difference between the two clocks is not zero. Otherwise, if 3D-MPARM has to be stopped,
a flag is set inside 3D-MPARM and the SystemC simulation is stopped at the next clock cycle.
A second call-back has been defined to access from QEMU 3D-MPARM'’s clock cycles count.

The new SystemC module, synch_module, is in charge of counting clock cycles elapsed from
time ¢y (See Section 3.3), holding this count in a variable accessible via the call-back and used
by QEMU to check wheter someone should be stopped. Beside the cycle count this module is
also in charge to check whether 3D-MPARM clock has to be stopped due to synchronization,
and if this is the case the synch_module does not finish its execution until the simulated times
are aligned again. The synch_module is sensible to the clock of 3D-MPARM architecture and
then it is scheduled by SystemC at each clock cycle. With this method we are easily able to
stop the SystemC simulation for the time needed.

Given that both 3D-MPARM and QEMU threads access concurrently a set of variable, we
surrounded those accesses with a crititical section to avoid any possibile race condition.

3.4 Software stack

In this section we provide a complete description of the software stack used to allow the pro-

grammer to fully explot the accelerator from within the operating system running on top of
QEMU.

3.4.1 Memory map

0x00000000

0x0000011F
0x00000120 JOB_FLAG

el o[okbZy SHUTDOWN_ FLAG
0x00000128

JOB Binary
(code & data)

OXO3FFFFFF

Figure 4: Shared memory segment organization
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Before starting the description of the software stack it is important to describe the memory
map of the virtual platform. All the software layers of this system are based on top of it.

Figure 4 shows the organization of the shared memory segment. At the very top of this region
we put the binary of the firmware, this is where 3D-MPARM starts fetching code at platform
startup. Then two flags are defined: JOB_FLAG and SHUTDOWN_FLAG. The former is used
by the host processor to signal the accelerator that there is a new job to run, the latter is used
to shutdown the platform. Finally the rest of this segment is reserved to contain code and data
of the actual job.

3.4.2 3D-MPARM Firmware

As already introduced, at simulation startup 3D-MPARM starts executing the binary of a
firmware. This firmware is necessary to correctly manage the accelerator from the host pro-
cessor. The firmware is executed by all 3D-MPARM cores, and during its executions cores are
waiting for commands from QEMU such as a new job to execute. Beside the management
of jobs this firmware is also in charge of managing accelerator’s instruction caches, especially
regarding the invalidation of caches between the execution of two different jobs. For the design
of this virtual platform we had to modify 3D-MPARM’s execution model, originally it takes a
single binary which is executed until the end of the simulation. Running two binaries meant
two run two different simulations. Now we run 3D-MPARM with a first binary which is the
firmware, and then it will run until the shutdown of the entire platform. Jobs are pushed at
runtime putting their binary at a fixed location (in the Job Binary region) and then notifying
the firmware, via th JOB_FLAG, that there is a new job to execute. Between the execution of
each job the instructions caches are not invalidated and it happens that pushing a new job will
find I-caches valid but with the wrong code, the one of the last job. To overcome this problem
we force the invalidation of I-Caches before the execution of each job. The following snippet
shows a general implementation of 3D-MPARM’s firmware.

while (!shutdown) {
while(!execute_job);
invalidate_Icache();
job();

}

3.4.3 Linux Driver

In order to build a full system simulation environment we mapped 3D-MPARM as a device in
the device file system of the guest Linux environment running on top of QEMU. A device node
/dev/mparm has been created, and as all Linux devices is interfaced to the operating system
using a Linux driver. The driver provides all basic function to interact with the device:

e open,

e close,

read, write,

ioctl,

llseek
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At kernel boot the memory available to the kernel is 192MB (256MB - 64MB) and the
shared memory region is not still visible to the system. The first operation performed by the
driver is to map this region into the kernel memory space using an ioremap() call. Henceforth
all accesses to the shared memory region can only happen via ioread and iowrite calls from
the kernel space, and from the userspace using driver’s read, write and 1llseek. The read
and write functions allow to read and write the shared memory segment, for example the write
function is used when copying the binary of a job from the application userspace to the shared
memory segment. As kernel cannot directly access userspace memory buffers it was necessary
to use the copy_from_user and copy_to_user functions, which check permissions and validity of
the address provided before effectively accessing the memory. It is important to notice that read
and write functions can only access the Job Binary section(Fig 4), while the control locations
will be accessed only through an ioctl call.

The ioctl function works as control interface for the accelerator, it allows to:

e Reset the shared memory segment: writes 0 in all locations.

Start the execution of a job: writes 1 at JOB_FLAG address

Shutdown the system: writes 1 to SHUTDOWN_FLAG address

Check the state of the simulation: reading at address JOB_FLAG, this location will contain
1 until the end of the job

Control the synchronization mechanism: start, stop and get actual simulation time.

The last point is the only needing a deep explanation. To start or stop the synchronization
and to read the actual cycle count, it is necessary to cross the line between the target simu-
lated operating system and the simulation environment to trigger all strucures and mechanisms
necessary to perform the synchronization. The crossing phase is implemented using semihosting.

Semihosting is a technique developed for ARM targets allowing the communication between
an application running on the target and a host computer running a debugger. In other words,
it enables the redirection of all the application’s IO system calls (e.g. printf()) to a debugger
interface. The essence of semihosting is a particular software interrupt (sve 0x123456) which
when caught from a debugger interface is redirected to the host machine (CPU platform) instead
of otherwise simulating on target platform. This interrupt takes two parameters in registers r(
and rl. The r0 carries the semihosting operation identifier which are pre-defined by ARM as
well as our custom-defined identifier, SYNCH_HANDLING_ID.

QEMU is already capable to handle semihosting calls, so we only had to extend the existing
structure in order to manage call for the SYNCH_HANDLING_ID semihosting identifier. The second
parameter in rl carries the operation identifier, QEMU performs the desired operation (start
or stop synchronization, and read simulated time) according to that value.

3.4.4 Userspace library

To simplify programmer’s job we have also designed a user level library, which provides a set of
APIs that rely on the Linux driver functions. This API can be divided in two different layers
based on abstraction level: low and high level functions.

The low level functions map directly driver’s operations and can be summarized as follows:

e int open_device(int flags);

e void close_device(int fd);
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APT’s function name ‘ Behavior

load_job_binary(char * filename); | Load the binary of a job into shared mem-
ory segment

void start_acceleration(); Starts the execution of a job on the accel-
erator
int check_job_status(); Return non zero if the accelarator is stil

running, define a user level synchroniza-
tion point between host processor and ac-

celerator
void start_synchronization(); Ativate the synchronization mechanism
void stop_synchronization(); Deactivate the synchronization mecha-
nism
uint64 t get_simulated time(); Get the actual simulation time, synchro-

nization must be activated

Table 1: High level API’s functions description

e void mwrite(void *buff, int size, off_t off);

e void mread(void #*buff, int size, off_t off);

Beside the obvious open_device and close_device, mread and mwrite allow the user to
write a buffer in userspace to the shared memory segment. Table 1 shows a list of high level API’s
functions which of course are based on the low level ones. The last three entries of the table,
enable the user to manage the synchronization mechanism and are all implying semihosting
calls.

4 Experimental Results

In this section we present a set of experimental results aimed at validating the proposed virtual
platform. The focus of the benchmarks used it is not to test how they run on the ARM core, or
to evaluate the scaling one would obtain running them on top of the accelerator; but rather we
want to evaluate the interface between QEMU ad the SystemC model(3D-MPARM) and also
the synchronization mechanism presented in Section 3.3.

4.1 Experimental setup

Table 2 summarizes the experimental setup of the virtual platform used for all benchmarks
discussed.

We chose as ARM core clock frequency 1GHz, even if the ARM modeled by QEMU is a
ARMO926 works at up to 500MHz, to resemble a state of the art ARM processor performance.
The frequency would only affect results in terms of global values, all considerations done in this
section stay valid even changing the ARM core clock frequency.

4.2 Host side benchmark structure

To fully understand results presented in this chapter it is important to catch the structure of
the benchmark, especially on the host processor side. This helps the reader to understand
considerations done regarding the interaction between QEMU and 3D-MPARM.
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’ Parameter ‘\ﬁﬂue
ARM Core clock frequency 1GHz
3D-MPARM Cores clock frequency | 250MHz
# 3D-MPARM Cores up to 16
Guest OS Debian for ARM (Linux 2.6.32)
Time synchronization threshold 100 simulated nsecs

Table 2: Experimental Setup

The following code snippet shows the structure of the ARM side of our benchmarks.

void main(){
do_something () ;
printf ("Benchmark start time %1lu",get_simulated_time());

/*Load job binary into shared memory segment*/
load_job_binary("/path/to/binary");

start_synchronization() ;

/*Start the execution on the acceleratorx*/
start_acceleration();

/*Wait for job to finish*/
while (check_job_status());

printf ("Benchmark stop time %1llu",get_simulated_time());
stop_synchronization() ;
do_something_else();

}

The binary of the job to be accelerated stays in the Guest linux file system and is a parallel
matrix multiplication benchmark. We take the simulated execution time before the offload of
a job to the accelerator, and after the end of the job. This measurement represents the time
taken by the benchmark to run on the accelerator, plus an overhead introduced by the user
level software stack.

4.3 QEMU slowdown

As described in Section 3.3, our synchronization mechanism is adding a certain overhead over
QEMU due to a few helper functions calls per ARM instruction executed. To evaluate this
slowdown we used a simple experiment, running the same benchmark in two different cases:

1. synchronization active

PRO3D - 248776 15/20 Thursday 5% July, 2012 13:57



Public Programming for Future 3D Architectures with Manycore

2. synchronization not active, but ARM cycle count active

In this way we are able to measure the number of simulated instructions per time unit and
to evaluate the slodown due to the synchronization with 3D-MPARM. Table 3 shows the results
of this test. The benchmark has the same structure seen in Section 4.2 while the job ofloaded
to 3D-MPARM has no importance in this test. The only 3D-MPARM’s parameter we take care
of is the number of processors, the accuracy increases at increasing number of cores and the
simulation speed decrease as well.

] # 3D-MPARM Cores \ SCLK /usec \ Slowdown

no synch 55813.5 1x

1 868.3 64x
4 345.6 158x
16 107.4 500x

Table 3: Slowdown due to synchronization, SCLK - Simulated Clock Cycles

The slowdown can reach 500x when 3D-MPARM runs in 16 cores configuration. This is
unavoidable because the simulation speed, when the synchronization is active, is directly depe-
dent from the slowest between QEMU and 3D-MPARM. Given that 3D-MPARM is hundreds
of times slower than QEMU, the bigger the number of cores in 3D-MPARM the slower is the
simulation.

Given the effects of synchronization over the simulation speed we extended the programming
API with two more functions: start host_cycle_count(), stop_host_cycle_count(). These
new functions allows the user to only activate the ARM side cycle count, useful in the case
when the programmer is profiling code only running on the host processor and doesn’t need to
be synchronized with the co-processor. We used this extension in the next section, to measure
the time taken by a benchmark running only on the host processor.

4.4 Effects of synchronization threshold

To evaluate effects of the synchronization threshold consider the case where we want to measure
the execution time of an application, involving both the host processor and the co-processor.
Figure 5 is showing the timeline of such application: after starting the synchronization the host
processor run a prolog code, then it offloads a job to the co-processor. While the job is executed
by the co-processor the the host processor is waiting for its end. At the end of a job the host
executes the epilogue and stops the synchronization. We Consider the total benchmark time
(T = P+ W + FE) the one between start and stop of synchronization system, whith P and F the
time to execute prologue and epilogue respectively and W the time spent by the co-processor
to finish the job. The parallel job is a matrix multiplication, which scales the execution time
increasing the number of cores available in the coprocessor. Running the whole application
varying the number of accelerator’s cores, we expect to see P + E constant while W scaling
with the number of cores.

In our experiment we run the benchmark described above, with various accelerator’s config-
urations and with three different values of the synchronization threshold (100 ns, 100us, 100ms).
Figure 6 shows the trend of the P + E component, while the job time is not reported because
it is not useful for this analisys. What we expect to see is that the global benchmark time is
equal to the parallel job time plus a fixed overhead (P + E), the closer are those values the
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QEMU MPARM

start_synch()

start_accelerator()

awi|

job_completed()

stop_synch() [

W wait for job mMprologue (P) W epilogue (E)
end (W)

Figure 5: Application time line

better is the time measured. The P + E component increase when increasing the synchroniza-
tion threshold, while stays constant at varying number of accelerator’s cores. This happens
because increasing the threshold we increase the possible skew between the clock of QEMU and
3D-MPARM, dilating the simulation time. At the same time the parallel job execution time is
not affected by the threshold, and its duration is measured from within 3D-MPARM.

It is important to notice that with a 100ms threshold the value reported in the plot is
not constant at increasing number of cores. The strange trend is due to a combination of the
threshold value and the duration of the parallel job, which decrease at increasing number of
cores. From now on we used 100ns as synchronization threshold value, as it showed the best
results.
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Figure 6: Synchronization threshold effect, the plot reports only the P4+E time for each config-
uration

4.5 Validation of parallel execution

Figure 7 shows the results of running the matrix multiplication benchmark varying the number
of cores available on the accelerator. The benchmark scheme is always the one described in
Section 4.2, but this time we measure two different times. The plot shows results for both the
time measured from QEMU, and the time measured from within 3D-MPARM. The latter is
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just the time taken by the accelerator to execute the matrix multiplication algorithm.
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Figure 7: MMULT

The difference between the time measured by QEMU and the time measured by 3D-MPARM
gives an idea of the time spent running the software API used to offload the binary, start the
accelerator and wait for the completion of the job. This overhead represents less than the 1%
of the total runtime and is ~ 13 simulated micro-seconds. An important observation is that the
overhead is, as expected, constant even varying the number of cores in 3D-MPARM. This result
means that the interface between QEMU and 3D-MPARM is not influenced by the architecture
modeled by both. This feature is crucial for programming models developers, who want to know
the overhead introduced by their software layer.

To conclude, the fact the the time measured by QEMU is really close to the one measured
by 3D-MPARM plus a little overhead due to the software API (Fig. 8), confirms that they run
in effective parallelism. If QEMU and 3D-MPARM were running in sequence, given that the
global simulated time for the platform is the one provided by QEMU, we would not see the
3D-MPARM execution time on the one measured by QEMU.

start_synch()

start_accelerator(

awi|

job_completed()
stop_synch()

mm Software APl overhead

Figure 8: Overhead of the Userspace sw library

4.6 Evaluation of speedup due to exploitation of the co-processor

To validate our time measurement mechanism we wore the hat of a user of the proposed platform,
a programmer. We want to know the speedup achievable when accelerating a set of algorithmd
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onto the many-core accelerator present in the platform. The algorithms chosen are: Matrix
Multiplication, RGBtoHPG color conversion, and image rotate algorithm.

As a first test we ran all three benchmarks on the ARM processor only, thus without any
multicore acceleration. In a second test, using our programming API, we offload the execution
of of each parallel benchmark to the accelerator. In both cases we measure the duration of the
benchmark from the ARM side, using a scheme similar to that in Section 4.2.

7000000
6000000
T u QEMU
g 5000000
w
£
g 4000000 " QEMU+
=
T 3000000 - MPARM &
k] Cores
E 2000000 - QEMU +
& MPARM
1000000 - 16 Cores
MMULT ROTATE RGBTOHPG

Figure 9: Simulated time speedup due to accelerator exploitation

Figure 9 shows the results of this experiment and prove that the proposed synchronization
mechanism allows the programmer to appreciate the speedup achieved offloading a job to the
accelerator. Using 3D-MPARM with 8 cores we can see a speedup of ~ 3 times for the matrix
multiplication, ~ 3 for the rotate benchmark and ~ 5 for the RGBtoHPG benchmark. While if
running 3D-MPARM with 16 cores we can appreciate an almost double execution speedup for
all the proposed benchmarks.

5 Conclusion

In this deliverable, we have presented a new emulation framework based on QEMU and 3D-
MPARM. The main outcome of our work has been the possibility to have QEMU and 3D-
MPARM running effectively in parallel, allowing the programmer to catch the real behavior
of the architecture and to design its software accordingly. In order to achieve our purposes,
we have enhanced the PRO3D virtual platform (i.e. 3D-MPARM) with a series of extensions
aimed at enabling efficient P2012-based full-system simulation for architectural analysis and
design space explorations.
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