Thermal Analysis and Active Cooling Management for 3D MPSoCs

Sabry, Mohamed and Atienza Alonso, David and Coskun, Ayse Kivilcim.
Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS’11).
3D stacked architectures reduce communication delay in multiprocessor system-on-chips (MPSoCs) and allowing more functionality per unit area. However, vertical integration of layers exacerbates the reliability and thermal problems, and cooling is a limiting factor in multi-tier systems. Liquid cooling is a highly efficient solution to overcome the accelerated thermal problems in 3D architectures. However, liquid cooling brings new challenges in modeling and run-time management. This paper proposes a design-time/run-time thermal management policy for 3D MPSoCs with inter-tier liquid cooling. First, we perform a design-time analysis to estimate the thermal impact of liquid cooling and dynamic voltage frequency scaling (DVFS) on 3D MPSoCs. Based on this analysis, we define a set of management rules for run-time thermal management. We utilize these rules to control and adjust the liquid flow rate in order to match the cooling demand for preventing energy wastage of overcooling, while maintaining a stable thermal profile in the 3D MPSoCs. Experimental results on multi-tier 3D MPSoCs show that proposed design-time/run-time management policy prevents the system to exceed the given threshold temperature while reducing cooling energy by 50% on average and system-level energy by 18% on average in comparison to using a static worstcase flow rate setting.