An energy ecient DRAM subsystem for 3D integrated SoCs
C. Weis, I. Loi, L. Benini, and N. Wehn.
In Design, Automation Test in Europe Conference Exhibition (DATE), 2012, pages 1138-1141, march 2012.
Energy efficiency is the key driver for the design optimization of System-on-Chips for mobile terminals (smartphones and tablets). 3D integration of heterogeneous dies based on TSV (through silicon via) technology enables stacking of multiple memory or logic layers and has the advantage of higher bandwidth at lower energy consumption for the memory interface. In this work we propose a highly energy ecient DRAM subsystem for next-generation 3D integrated SoCs, which will consist of a SDR/DDR 3D-DRAM controller and an attached 3D-DRAM cube with a fine-grained access and a very flexible (WIDE-IO) interface. We implemented a synthesizable model of the SDR/DDR 3D-DRAM channel controller and a functional model of the 3D-stacked DRAM which embeds an accurate power estimation engine. We investigated dierent DRAM families (WIDE IO DDR/SDR, LPDDR and LPDDR2) and densities that range from 256Mb to 4Gb per channel. The implementation results of the proposed 3D-DRAM subsystem show that energy optimized accesses to the 3D-DRAM enable an overall average of 37% power savings as compared to standard accesses. To the best of our knowledge this is the rst design of a 3D-DRAM channel controller and 3DDRAM model featuring co-optimization of memory and controller architecture.